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In contrast to the well-known columnar convection mode in rapidly rotating spherical 
fluid systems, the viscous dissipation of the preferred convection mode at sufficiently 
small Prandtl number Pr takes place only in the Ekman boundary layer. It follows that 
different types of velocity boundary condition lead to totally different forms of the 
asymptotic relationship between the Rayleigh number R and the Ekman number E for 
the onset of convection. We extend both perturbation and numerical analyses with the 
stress-free boundary condition (Zhang 1994) in rapidly rotating spherical systems to 
those with the non-slip boundary condition. Complete analytical solutions - the 
critical parameters for the onset of convection and the corresponding flow and 
temperature structure - are obtained and a new asymptotic relation between R and E 
is derived. While an explicit solution of the Ekman boundary-layer problem can be 
avoided by constructing a proper surface integral in the case of the stress-free boundary 
problem, an explicit solution of the spherical Ekman boundary layer is required and 
then obtained to derive the solvability condition for the present problem. In the 
corresponding numerical analysis, velocity and temperature are expanded in terms of 
spherical harmonics and Chebychev functions. Accurate numerical solutions are 
obtained in the asymptotic regime of small E and Pr, and comparison between the 
analytical and numerical solutions is then made to demonstrate that a satisfactory 
quantitative agreement between the analytical and numerical analyses is reached. 

1. Introduction 
The understanding of convective fluid motions in rapidly rotating fluid spherical 

systems is of fundamental importance to many problems in geophysics and planetary 
physics. There exist, in general, two distinctly different types of the convective motions: 
slowly drifting columnar rolls which are the most unstable for moderate or larger 
Prandtl numbers (Busse 1970; Zhang 1992) and fast azimuthally travelling waves in the 
form of an inertial mode of the PoincarC equation, which are preferred for smaller 
Prandtl numbers (Zhang 1994, hereinafter referred to as Zl). The connection between 
the Poincare inertial modes and convective instabilities was discovered when the 
assumption of the stress-free boundary condition was made. Under this assumption, 
complete analytical solutions at the onset of convection in a rapidly rotating sphere 
were obtained on the basis of the perturbation of solutions of the PoincarC equation. 
While the assumption of the stress-free boundary condition is relevant to planetary 
fluid systems like atmospheres, and is mathematically convenient, it is inappropriate 
for systems like the liquid core of the Earth and for comparison with laboratory 
studies. In this section, we shall not attempt to discuss the relevant background and 
history of the subject, which can be found in previous papers (Zhang 1992; Z1) and 
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review articles, for example, by Fearn, Roberts & Soward (1988) and Proctor (1994). 
Instead, attention is focused on why the type of boundary condition is of central 
importance to the present problem. 

The importance of the type of boundary condition for rotating spherical convection 
at small Prandtl numbers is connected with the most distinct and intriguing character 
of the Poincari mode convection: the contribution of the viscous dissipation at the 
onset of convection comes solely from the Ekman boundary layer (Zl, equation 
(5.21)). As a consequence, the type of boundary condition plays an essential role in 
the analysis of the Poincari mode convection, as contrasted with the well-known 
Roberts-Busse-Soward convection theory (Roberts 1968 ; Busse 1970 ; Soward 1977). 
For a better understanding of the present perturbation theory, it is worth comparing 
several key aspects of the present theory with Busse's perturbation theory (1970). For 
a rapidly rotating spherical system with a fixed rotation rate 52, we may introduce an 
expansion in powers of a small parameter like the viscosity v, and we assume that the 
zeroth order is in geostrophic balance (Busse 1970) 

252 x u, = -VP,, (1.1) 

with boundary condition u,.t = 0, where (r ,  8, #) are spherical coordinates with unit 
vectors (y1, e, #). The only admissible solution of (1.1) is a steady azimuthal flow of 
the form 

1 aP, 
uo(v = 0) = -- 

2101 as $3 

where (s, 4, z )  are cylindrical coordinates with unit vectors (i, $, 2). The basic features 
of the solution of the zeroth-order problem (1.1) are thus fundamentally different from 
the corresponding convection solution 

(1.3) 

which is obtained at arbitrarily small but non-zero v. This represents a typical feature 
of a singular perturbation problem. In this case, the viscous dissipation of convective 
motions at leading order takes place only in the interior of the sphere and, 
consequently, there are no differences between the asymptotic laws (the relationship 
between the Rayleigh number R and the Ekman number E a t  the onset of convection) 
obtained from the stress-free and non-slip boundary conditions (Roberts 1968). 
However, if the zeroth-order equation is 

(1.4) 

which gives rise to a lower value of the Rayleigh number for the onset of convection 
at smaller Prandtl number Pr (Zl), an azimuthally travelling-wave solution of the form 

(1.5) 

is admitted. Solution (1.5) of the zeroth-order problem may smoothly approach the 
exact solution of convection for arbitrarily small but non-zero v 

u(v+ 0) = (us, u+, uz) eim$+i"t, 

iou, + 252 x u, = - VP,, 

uo(v = 0) = u,(s, z )  eim$+iwt, 

u(v+0)+uo(u = O ) ,  

except in the thin Ekman boundary layer. In this case, the viscous dissipation of 
convective motions at leading order takes place only in the Ekman boundary layer. The 
structure of the boundary layer is, of course, dependent upon the type of boundary 
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condition. It follows that different types of boundary condition lead to totally different 
forms of the asymptotic laws. From a mathematical point of view, the nature of the 
present analysis is regular perturbation while Busse's analysis (1970) is related to a 
singular perturbation problem. It should be noted that the complete boundaries that 
separate different convection modes in the R- Pr parameter space cannot be 
determined by the present analysis, although we show that R = O(E'/') when Pr+O 
(53.3) and we know that R = O(E-lI3) when Pr % 1 (Roberts 1968). This is due to the 
fact that a proper asymptotic theory for rotating spherical systems describing the 
spiralling convection mode, which is preferred at moderately small Prandtl number 
(Zhang 1992), is still not available, though a modification and an improvement for the 
Busse's annulus model was made by Yano (1992). 

There exist a number of important differences between the stress-free and non-slip 
convection problems in rapidly rotating spherical fluid systems that are characterized 
by small Prandtl number. First, the non-slip boundary condition leads to an entirely 
new type of the asymptotic law for the Rayleigh number, because the amount of 
thermal energy needed to sustain the convective instability is solely determined by the 
structure of the Ekman boundary layer that is connected with the type of velocity 
boundary condition. Secondly, the effects of the spherical Ekman boundary layer in the 
case of the stress-free problem can be taken into account by constructing a proper 
surface integral and, consequently, a complicated spherical-boundary-layer solution is 
not needed. However, a complete solution of the spherical Ekman boundary layer is 
essential to the non-slip problem. This is because the stress-free boundary condition 
requires 

and the viscous dissipation involves the second-order derivative a2/ar2. It follows that 
a surface integral that satisfies the first-order derivative condition (1.6) may be 
constructed from the solvability integrals (see Z1 for details) by partial integration. 
However, the non-slip boundary condition requires the disappearance of all velocity 
components at the boundaries without involving the radial derivative. As a result, the 
construction of a similar surface integral by partial integration to avoid an explicit 
boundary-layer solution is not possible. Thirdly, the leading-order solution is not 
modified in the case of the stress-free boundary condition. However, the leading-order 
solution for the non-slip problem is modified by the Ekman boundary-layer solution 
and, more importantly, the azimuthal symmetry of the convection cells of the leading- 
order solution is destroyed by the different azimuthal phases of the boundary-layer 
flow. Finally, a complete analytical expression for the critical Rayleigh number was 
obtained at the small Pr limit with the stress-free boundary condition, but the 
solvability integral associated with the Ekman boundary-layer solution for the non-slip 
problem must always be evaluated numerically. A nearly entirely new numerical code 
is needed for the non-slip problem because the spectral method is used for the 
numerical analysis. Moreover, obtaining a numerical solution for the non-slip problem 
characterized by a thin spherical Ekman boundary layer is much more difficult than for 
the corresponding stress-free prob!em. 

The objectives of this paper are threefold. First, we extend the previous perturbation 
theory (Zl), which is based on the assumption of the stress-free boundary condition, 
to that for the non-slip boundary condition. Secondly, we carry out the numerical 
analysis of the same problem in the parameter space that is appropriate for comparing 
with the perturbation analysis. Thirdly, we compare the analytical solutions to the 
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numerical results and discuss relevant physical implications. Accordingly, the 
remainder of the paper is organized as follows. After giving the brief mathematical 
formulation of the problem in $2, the perturbation analysis is presented in $3. This is 
followed by the corresponding numerical analysis and discussion in $ 4 and closing 
remarks in $5. 

2. Mathematical formulation 
This section is kept brief since the mathematical formulation of the problem is 

similar to that described in Z1 (see also Chandrasekhar 1961). Consider the problem 
of linear convective instability in a Boussinesq rotating fluid spherical shell with 
constant thermal diffusivity K ,  thermal expansion coefficient a, kinematic viscosity u 
and gravity g = yr, y being a constant. The convective stability problem is governed 
by the following dimensionless equations : 

iou+2kxu = - V P + R ( 1 - ~ ) 4 0 r + E ( 1 - ~ ) - 2 V 2 ~ ,  (2.1) 

(2 * 2) v . u  = 0, 

where k denotes the unit vector parallel to the rotation axis, k = a/lal, r is the position 
vector, 7 is ri /ro,  the ratio of the radius of the inner sphere to that of the outer sphere, 
and 0 represents the temperature deviation from the purely conductive state, $r2, 
produced by a uniform distribution of heat sources (Chandrasekhar 1961). Equations 
(2.1k(2.3) have been non-dimensionalized as follows 

r + ( r ,  - Ti) r ,  t -+ t(r, - ri)'/u, 0 -+ O/3(r, - ri)'u/K. 

The non-dimensional parameters - the modified Rayleigh number R, the Prandtl 
number Pr and the Ekman number E - are defined as 

It should also be noted that the Rayleigh number R and frequency o in (2.1k(2.3) are 
rescaled by the Ekman number E. The velocity boundary conditions are non-slip and 
impenetrable, which give 

(2.4) 

at the inner and outer bounding spherical surfaces. Perfect thermally conducting 
boundaries impose 

(2.5) 

The type of thermal boundary condition for 0 is unlikely to be critically important 
since the temperature 0 does not enter into the leading-order problem. Note that the 
boundary conditions at r = ri apply only to the numerical solutions. The problem of 
convective instability is then defined by (2.1)-(2.3) with boundary conditions 
(2.4F(2.5). Both numerical and analytical solutions to the same problem are sought. 
While a spherical shell (7 > 0) is concerned in the numerical analysis, a full sphere 
(7 = 0) is considered in the perturbation analysis. 

u4 = uo = u, = 0 

O(ri, 8, $J) = @(yo ,  8, q5) = 0. 
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3. Perturbation analysis 
3.1, Solvability condition 

For the perturbation approach of the convective instability problem, we assume that 
solutions of the problem for arbitrarily small but non-zero E can be written as 

= uo+(ub+ui), P = Po+(pi+Pb), w = wo+w,. (3.1 a-c) 

Here (uo, P,, w,) represent the inviscid solution when E = 0 with 

uo = O( l), Po = O( l), ( 3 .2~)  

ui and P, refer to the small interior perturbations to (u,, Po) when E is arbitrarily small 
but non-zero 

ui = O(E1/2) ,  pi = O(E1/'), (3.2b) 

ub and Pb denote the boundary-layer correction introduced by the arbitrarily small but 
non-zero E and non-slip boundary condition (2.4) 

U b  = O(l), Pb = O(l), (3 .2~)  

which are non-zero only in the Ekman boundary layer of thickness O(E1l2), and w1 is 
a small perturbation to 0,. Substituting expansions (3.1 ak(3.1 c)  into equations 
(2.1k(2.3), the leading order (E  = 0) of the perturbation problem in the limit 7 = 0 
gives rise to 

iw ,uo+2kxu,  =-VP,, (3.3) 

v-u,  = 0, (3.4) 

together with impenetrable boundary condition u , - i  = 0 at Y = r,. In the limit E = 0, 
the other boundary conditions as well as heat equation (2.3) are not involved. Some 
special properties of equations (3.3)-(3.4) were discussed by Zhang (1993) and the 
precise form of the relevant solutions u, was also given by equations (13)-( 15) in the 
same paper. 

When the Ekman number E is arbitrarily small but non-zero, governing equations 
at the next order perturbation problem for the whole sphere (including the interior 
perturbation and boundary correction) can be derived by substituting expansions 
(3.1 ak(3.1 c) into equations (2.1)-(2.3) and subtracting equations (3.3)-(3.4) 

iw0(ub+u6)+2k x (ub+Ui)+v(pi+Pb) = RrO+EP2(uo+ub)-iwl(u,+ub), (3.5) 

(V2- iwoE-'Pr)0  = - r -uo ,  (3.6) 

V.(Ub+Ui) = 0, (3.7) 

where smaller terms, iuiwl, EP2ui and r-ub = O(E'/'), are neglected. The boundary 
condition for ub is 

at the outer spherical surface r = r,. It is worth mentioning that the precise structure 
of ui and how the boundary flow ub is matched to the internal flow u, at the edge of 
the boundary layer are of secondary significance for the present purpose of stability 
analysis. 

The solvability conditions can be, as described in Z1, obtained by multiplying 
equation (3.5) by the complex conjugate of uo, denoted by ut, which also satisfies 

#*(ub-uo) = 8 ' ( U b - u , )  = i ' u ,  = 0 (3.8) 
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V-u,* = 0 and boundary condition tau,* = 0, and then by integrating over the volume 
of the sphere. The resulting left-hand side of equation (3.5) then vanishes because 

lv U,* [iW,(Ub + ui) + 2k x (ub + ui) + v(4 + pb)] d v 

F. [ (u ,+uJP,*+u ,* (P ,+P~) ]~S=  0, (3.9) 
= Is 

where P,* denotes the complex conjugate of Po and js dS  represents the surface integral 
over the spherical surface at r = r,. The right-hand side of equation (3.5) then yields 
two integral equations, from its real and imaginary part: 

u,*-V2(uo+u,)dV], (3.10 a )  

u,*.V2(ub+uO)dV +o, Iu0/'dV, (3.10b) 1 s,. and 

where the term jv u,* ub dV has been neglected compared with jv (uOl2 d V since ub 
vanishes except in the Ekman boundary layer. Recognition of the fact that the velocity 
u,* is orthogonal to V2uo (see Z1 for details) 

Juu,*-VZuodV = 0, (3.1 1) 

( 3 . 1 2 ~ )  

gives rise to 

luo12dV. (3.12b) 

In other words, the contribution of the viscous dissipation comes only from the Ekman 
boundary layer. While equation ( 3 . 1 2 ~ )  determines the Rayleigh number for the onset 
of convection, equation (3.12b) calculates the correction for frequency wo which is of 
less interest. Heat equation (3.6) is exactly the same, at leading order, as in the case 
of the stress-free boundary condition. The problem of linear convective instability in 
a rapidly rotating sphere with small Prandtl numbers can therefore be fully solved 
analytically if an explicit solution of the spherical Ekman boundary flow L(b is obtained. 

It is also worth mentioning that the perturbation scheme with double expansion in 
terms of two small parameters - the Ekman number E and Prandtl number Pr - may 
be used for the present analysis, as treated by Busse (1983) for the problem of small- 
Prandtl-number convection. We have not adopted the double expansion approach for 
two reasons, which are also applicable to the previous analysis (Zl).  First, there is no 
need to use the double expansion because Pr appears only in heat equation (3.6), and 
analytical solutions of equation (3.6) can be obtained for any parameters of E and Pr 
as shown in Z1. Secondly, without using the Prandtl number as an expansion 
parameter the dependence of our analytical solutions upon the Prandtl number Pr can 
be studied. 

3.2. Solutions of the spherical Ekman boundary layer 
The equation governing the Ekman boundary flow may be derived from (3.5). We first 
set the interior perturbation uf = 0 and 4; = 0, and then note that inside the Ekman 
boundary layer 

IEV2ub( = O(1) % EV'U,, lROl = O(RE1'2) + 1 .  
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Making use of the above equations and neglecting the small term iw,(u, + ub) result in 
the order O( 1 )  equation for the Ekman boundary flow 

iw, ub + 2k x ub + VP, = EV'U,, (3 .13)  

together with boundary condition 

ub( 1,8,  $1 = - ( V, 6i + 5 c j )  exp (i(m$ + w, t ) )  = - Vexp (i(m$ + wo t ) )  

at the outer spherical surface so that the total velocity is identically zero at the spherical 
surface r = r,, where V, and 5 are defined as 

V 8 -  - - sinrn-lf3cos 8(a, sin2 8 + b cos2 8 + c),  (3.14) 

5 = sinm-l O(a, sin2 f3 + b cos2 f3 + c).  (3.15) 

Coefficients in (3.14)-(3.15) are given by 

(21 - 1 )  (21 + lw, - 20,) 
8 ( 1 - 1 )  

(21- 1)(1-2)wi (1- 2) b =  , c = -  
(2 - w0)' 

where 1 = m + 2  (see also Z l ) .  For convenience, we may introduce a boundary-layer 
variable 

To solve (3 .13) ,  first note that two independent equations can be deduced from (3.13) 

(21- 1)(510,-40,+21-4) 
8 ( 1 - 1 )  ag = 7 a, = 7 

4(w0 - 2) 

[ = E-li2(1 - r ) ,  a/& = - E-li2i3 1%. 

($-. WI, ) ~ X U ,  = - 2 ( k - i ) u b ,  

($-iwo)ub =2(k . r" ) ixub .  

Combining equations ( 3 . 1 6 ~ )  and (3.16b) gives a differential equation for ub 

( 3 . 1 6 ~ )  

(3.16b) 

(3.17) 

The velocity boundary condition at the outer spherical surface becomes 

ub(6 = 0) = - Vexp(im$+iw, t) ,  ( 3 . 1 8 ~ )  

a2ub 

at2 
-(t = 0) = [-iw, V - 2 ( k . i ) i x  V]exp(im$+iw,t), (3.18b) 

while the condition that the boundary-layer flow must remain bounded gives 

(3.19 a, b) 

In writing the conditions (3.18b) and (3.19b), we have used (3.16b). The fourth-order 
differential equation (3.17) together with the four boundary conditions (3 .18 a, b )  and 
(3.19a, b) determines the relevant solution of the spherical Ekman boundary-layer 
problem. 



246 K .  Zhang 

satisfying boundary conditions (3.19a, b) is 
It is straightforward to show that the solution of boundary-layer equation (3.17) 

where 

lo,+2k.r"1'12f: exp(im#+iw, t) ,  (3.20) I1 + C, exp 

W ,  - 2 k .  i 
loo - 2k. i l '  I ~ ~ + 2 k * i l '  

W ,  + 2 k .  i s, = s, = 

Here C,  and 
we need the 
which yield 

C,, a function of 0 and m, are complex vectors. For determining C, and C,, 
other two boundary conditions (3.18a, b) at the spherical surface f: = 0, 

- V = c, + c,, 
- [iw, V+ 2 ( k -  i )  i x V] = iC,(w,- 2k.F) +iC,(w, + 2 k . i ) ,  

which have the following solution 

C, = - f (V+i ix  V ) ,  C, = -$(V-iix V) .  

On substituting the complex vectors, C, and C,, into (3.20), we obtain the required 
solution of the spherical Ekman boundary layer 

+ ( V-ii  x V )  exp Iwo+2k-i11/2E-1/2(1 -r)}]exp(im$+iw, t ) .  (3.21) 

It should be noted that the boundary correction owing to the radial flow is of the order 
Ell2 (Greenspan 1968) and is therefore not included. It should also be pointed out that 
boundary solution (3.21) breaks down at the critical latitude 0, = COS-'(+~,). A 
substantial effect of the singular circle at Be, however, is not anticipated, as confirmed 
by the numerical analysis in 44, since the amplitude of the equatorially trapped mode 
decreases nearly exponentially from the equator and the gradient of velocity at the 
critical latitude is fairly weak (Zhang 1993). 

3 .3 .  Analytical results for the onset of convection 
Substitution of solution (3.20) of the Ekman boundary-layer problem into equations 
(3.12a) and (3.12b) gives rise to the Rayleigh number R and the correction for 
frequency w1 at the onset of convection 

(3.22 a) R =  27CE1/2 l sin @([ V4I2 + [ &I2) Iw, - 2 cos @I1'' do, 
4 2 Re [He1 

d 2  
Im[He] R-- 27CE'/2 lS,sin@([J$]'+[v,l') ]wo-2cos@11/2d@}/~u luo12dV 

where 

(3.22 b)  

He= u,*-rOdV, I 
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which is not affected by the non-slip boundary condition at leading order. In writing 
expressions (3.22a, b), we have neglected the following integral 

I, = iV*.(r^x V)Iw,-2co~O1'/~sinOdO. 

This is based on the fact that the function iV*.(r^x V )  is equatorially anti-symmetric 

iV*.(r^x V)(O) = -iV*-(ix V)(n-O),  

but the function Iw,, - 2 cos 81 is nearly equatorially symmetric. The inclusion of I, in 
expressions (3.22a, b), as has been checked, does not produce a significant change in 
the result. 

Let us first consider the simplest case when the thermal diffusion term in heat 
equation (3.6) is dominant 

l 

where wo = O(m-1/2) (ZI) and IV201 = O(m2@), which leads to Prm-512 -4 E. In this 
case, the term a@/at may be neglected and an analytical solution for heat equation (3.6) 
in the closed form can be obtained to give 

Re [H,I = E6 I,+,, 0 + E4 4 - 1 . 2  + E3 4 0  + E5 4 1  + E2 L 1 , l  

+ El L 1 , o  + E, L 2 ,  1 + E8 L 2 , 2  +E9 L 2 , o  + El0 L2,3, (3.23 a) 

Im[H,] = 0, (3.23 b) 
where is defined as 

2n+2nn!(2j- l)!! I . =  
n ~ l  (2n+2j+3)!! ' 

and the coefficients {Ek, k = 1,2, . . . , lo} have explicit analytical expressions (see Z1 for 
details). For a general expression that is valid for any values of Pr and E, we have the 
following analytical formulae 

[a, Z;, + (d+ b) Z &  + cB;~  Z;J2 m+2 N 

+ G n l '  Re[H,I = c c 
n=l Bfr+8j:+l(B,n) [Pr2 E-2w2 

(3.24) 

. (3.25) 
- (wo E-lPr) [a, Zin + (d+ b) Z:n + cB:~ Z;J2 

B~p+10j,2,,(B,n) [Pr2 E-'w2 + Gn] 

m f 2  N 

Im [H@l = Z=m n=1 

Here Z&, Z:n, Z;n, a,, b, c and dare again analytical functions of wavenumber m and 
wo, their detailed expressions are given in Z1 andj,(B,,) satisfies 

jZ(Bzn) = 0, 0 < B,, < B,, < B,, < . . . , 
wherejz(x) is the spherical Bessel function. Note also that the 1 = m + 1 term in the sum 
cE'" is zero and, hence, should not be included in equations (3.24) and (3.25). The 
value of N is chosen according to the desired accuracy and four terms ( N  = 4) can 
usually give a better than 1 % accuracy of approximation. 

The general Rayleigh number expression (3.22a) is rather complicated, but a case of 
mathematical interest and much less complex is the zero Prandtl number limit. In this 
limit, H ,  is real and independent of E and Pr, and the Rayleigh number R at the onset 
of convection, according to formula (3.22a), obeys an asymptotic law 

R N Elt2. 
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FIGURE 1 .  (a) The Rayleigh number R plotted against the Prandtl number Pr for wavenumbers m = 
3,5 ,7 .  The Rayleigh number shown as a function of the Ekman number E, (b) for Pr = 0.005 and (c) 
for Pr = 0. -, Numerical results; ---, analytical results. 

This is to be contrasted with the asymptotic law (Roberts 1968; Busse 1970) for the 
columnar convection, in which the Rayleigh number R increases rapidly with 
decreasing Ekman number 

R - E-I/3. 

where the difference between the definitions of the Rayleigh number has been taken 
into account. The precise relationship R - Ell2 at the limit Pr = 0 calculated from 
expression (3.22a) and (3.23) is presented in figure 1 (c) for three different azimuthal 
wavenumbers; the corresponding numerical results with an inner sphere 7 = 0.2 are 
also shown in the same figure which will be discussed in 94. Only odd wavenumbers are 
presented in the figure since the inclusion of both even and odd wavenumbers does not 
yield any new physics, but gives too many curves resulting in an unclear picture. Such 
a simple power-law dependence is, however, not expected when the condition Pr 4 

is not satisfied. This is because of the factor EP2Pr2 appearing in the analytical 
expression (3.24). Dependence of R upon E for the three different wavenumbers based 
on expressions (3.22a) and (3.24) is displayed in figure l(b) for Pr = 0.005, and the 
corresponding Rayleigh number dependence on the Prandtl number Pr at E = is 
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FIGURE 2. Contours of u4 obtained from analytical formula (3.26) with rn = 7 on the left-hand 
side and rn = 3 on the right-hand side at the equatorial plane. 

shown in figure 1 (a). For E = lop5, the most unstable wavenumber m, is 3 at Pr = 0, 
which is increased to m, = 5 at Pr = 0.003 and becomes m, = 7 at Pr = 0.006. In 
general, the Rayleigh number and the most unstable wavenumber increase with 
increasing Prandtl number. 

An important and interesting feature concerning the structure of convection for the 
non-slip boundary condition is the phase modulation of the convection cell, which 
destroys the azimuthal symmetry of a cell with the stress-free boundary condition 
(figure 4, Z1) described by cosm4. The total convection velocity in the whole sphere 
at leading order may be written as 

u+ = [a+ rm+' sinm+' 0 + bym+' sinm-' 0cos2 0 + urn-' sinm-' 0 + 6 - F ]  exp (i(m4 + wo t)), 
(3.26) 

ue = [ae rm+l sinm+' 0 + bym+' sinm-' 0cos2 0 + crm-' sinm-' 0 + 6 - F ]  exp (i(rn4 + wo t)), 
(3.27) 

where 

F = - 0.5[( V +  if x V )  exp (- (2E)-'/2 (1 + S,  i) Iwo - 2 cos @Ill2 (1 - r ) )  

+ ( V -  if x V )  exp (- (2E)-'l2 (1 + S,  i) Iwo + 2 cos 011/2 (1 - r))] .  

Note that u, is the same as the radial component of uo at leading order. The phase 
modulation on the interior convection cell by the Ekman boundary flow is suggested 
by the complex vector F. Contours of u+ calculated from formula (3.26) are displayed 
in figure 2 for two different cases. Similar phase modulation is also found in numerical 
solutions. We have not shown the profile of temperature 0 since it is almost identical 
to that of the numerical solution which is not affected by the non-slip boundary 
condition at leading order. A small perturbation to the frequency w,, is of secondary 
significance for the problem of convective instability. However, it can be seen from 
(3.22b) that the frequency wo is always reduced by the thermal effects. 
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4. Numerical analysis 
4.1. Numerical method 

For the convenience of numerical analysis, we expand the solenoidal velocity u in the 
poloidal and toroidal decomposition 

u = V x V x rv+V x rw. 

Boundary condition (2.4) at the inner and outer bounding spherical surfaces then 
becomes 

=- = w = 0. 

The poloidal and toroidal fields, v and w, and the temperature deviation, 0, are then 
expanded in terms of spherical harmonics r ( O ,  q5) and Chebychev functions T ( x )  with 
the factor (1 -x2 )  which is retained to satisfy boundary conditions (2.4) and (2.5) 

(4.1) 

(4.2) 
av 
ar 

where coefficients Olmn, vlmn and wlmn are complex and time independent, m is the 
azimuthal wavenumber and 

x = 2r-(1 +~)/( l - r>.  

The y ( 0 ,  q5) are normalized such that the spherical surface integral 

IT(0,q5)12sinOdOdq5 = 1. 

For a given set of parameters, E, Pr and m, the subsequent procedure for obtaining the 
Rayleigh number R, the frequency o and complex coefficients Olmn, vlmn and wlmn at 
the onset of convection is the same as described in Z1 (see also Zhang & Busse 1987). 
However, an almost entirely new computational code is needed because the Galerkin 
spectral method is used. 

4.2. Numerical results for  the onset of convection 
It is of vital importance that numerical solutions are capable of resolving the thin 
Ekman boundary layer arising from the non-slip boundary condition in order that a 
proper comparison between a numerical and an analytical solution can be made. The 
accuracy of numerical solutions was therefore carefully checked at different regions of 
the parameter space. Table 1 illustrates two examples of convergence of the numerical 
solutions for the parameters 7 = 0.2, E = lop5 and Pr = 0.001, which are the most 
demanding cases in this paper as far as numerical resolution is concerned. It is also 
worth mentioning that satisfactory convergence is not only demonstrated by the 
critical parameters for the onset of convection, but also confirmed by the same detailed 
structure of the numerical solutions at different levels of the truncation. The choice of 
Chebyshev functions appears to lead to a quite satisfactory accuracy. Throughout the 
paper the value of the truncation parameter Nt is always chosen in accordance with the 
parameters of solutions to secure better than 2 YO accuracy. 

An interesting case for both numerical and analytical analysis is the simplest 
asymptotic relation R - El/', predicted by analytical formula (3.22~) in the small 
Prandtl number limit Pr < This power-law dependence is clearly borne out in 
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m = 3  m = 7  

Nt R W R W 

20 11.7 -0.242 25.5 -0.245 
24 11.3 -0.242 25.0 -0.245 
26 11.3 - 0.242 25.1 -0.245 
28 11.3 -0.242 25.4 -0.245 
30 11.4 -0.242 25.1 -0.245 

TABLE 1 .  Examples of the convergence behaviour for E = and 
Pr = 0.001 with 7 = rJro = 0.2. 

the numerical analysis which is displayed in figure 1 (c) for Pr = 0 together with the 
corresponding analytical results, though the analytical formula appears to overestimate 
the values of the Rayleigh number. A further case is when the effects of the Prandtl 
number are substantial: Pr < Em-'". This is illustrated in figure 1 (b)  by a typical case 
with Pr = 0.005. There seems no simple power-law dependence between R and E for 
this case, as suggested by the factor of ( E ' P r ) 2  in analytical formula (3.24). While the 
numerical curves depart significantly from the analytical curves for the larger Ekman 
numbers E > 5 x lop5, the differences between the analytical and numerical curves are 
less noticeable for the smaller Ekman numbers, E < 5 x lop5. A typical dependence of 
the Rayleigh number R upon the Prandtl number Pr, again together with the analytical 
results, is shown in figure 1 (a) .  It can be seen that the values of the Rayleigh number 
R and the most unstable wavenumber m, increase, in general, with increasing Prandtl 
number Pr and that the agreement between our analytical and numerical analysis is 
again reasonably satisfactory. The differences between the predicted values of R by 
(3.22 a )  and the corresponding numerical values are insignificant, and the analytically 
predicted most unstable wavenumber m,, which is associated with the minimum value 
of R calculated by using expression ( 3 . 2 2 ~ ) ~  is exactly the same as that determined by 
the corresponding numerical solutions. 

An important question that deserves a physical explanation is why the most unstable 
mode is switched from a columnar spiralling mode (Zhang 1992) to an equatorially 
trapped PoincarC mode described in this paper. An explanation may be partially 
provided by contrasting the two distinct convection solutions obtained at exactly the 
same parameters (E = lo-', Pr = 0.005,m = 5) which are shown in figure 3. The 
transition of the preferred form, from the spiralling mode to the PoincarC mode, occurs 
at 0.005 < Pr < 0.01 for E = lop5. While the Rayleigh number is R = 49.0 with w = 
0.24 for the Poincare mode at Pr = 0.005, the Rayleigh number for the spiralling mode 
is R = 54.0 with w = 0.12. It is suggested that the switch-over from the spiralling mode 
to the PoincarC mode may be interpreted as being a consequence of two competitive 
ways of transporting heat by convection. With decreasing Prandtl number, the 
columnar convection roll is increasingly extended and stretched in the direction of 
rotation (eastward), and the stretching is so enormous that the radial scale becomes 
eventually shorter in comparison with the azimuthal scale. This leads to a sharp 
increase of the viscous dissipation and to the reduction of effectiveness of the radial 
heat transport by convection. The Poincare mode provides an alternative form of 
convection in which the Coriolis forces are primarily balanced by the inertial and 
pressure forces and heat transport is concentrated in the equatorial region. 

It should be pointed out that our numerical solutions with the expansion of radial 
functions by (4.3-4.5) break down at 7 = 0. All numerical results shown in figure 1 are 
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FIGURE 3. Contours of u# (a) at the equatorial plane and (b)  in a meridional plane. On the left-hand 
side is the Poincark convection mode and on the right-hand side is the spiralling columnar mode. Both 
are obtained at the same Ekman and Prandtl numbers with E = Pr = 0.005 and m = 5. 

thus computed at 7 = 0.2, which is small enough to compare with the analytical 
solutions of a sphere and at the same time, large enough to obtain rapidly convergent 
numerical solutions. With regard to the application of the present theory for a sphere 
to planetary systems, however, it is of importance to understand the effects of an inner 
core, which cannot be understood on the basis of the available analytical solutions. 
Two typical examples of numerical convection solutions, one with a large scale with 
m = 3 and another with a smaller scale with m = 7, are shown in table 2. The 
corresponding structures of convection at 7 = 0.2 and 0.5 are shown in figure 4 for 
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FIGURE 4. (a) Contours of u+.and (b) contours of 0 in a meridional plane, (c) contours of u+ and ( d )  
contours of 0 at the equatorial plane for Pr = 0.001 and E = with m = 7. On the left-hand side 
is for the smaller inner sphere with g = 0.2 while the case of g = 0.5 is on the right-hand side. 

g = 0.2 g = 0.3 g = 0.4 g = 0.5 

R w R w R w R 0 

m = 3 11.4 -0.242 12.6 -0.240 15.6 -0.235 23.0 -0.222 
m = I 25.1 -0.245 25.8 -0.245 26.5 -0.245 21.6 -0.245 

TABLE 2. The Rayleigh numbers and frequencies obtained for different sizes of the inner sphere at 
E = and Pr = 0.001. 
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FIGURE 5. The same as figure 4 except for a smaller wavenumber rn = 3. 

m = 7 and in figure 5 for m = 3. General behaviour appears to be associated with the 
formula (Zhang 1993), 

When m >, m,, convection is insignificantly affected by the presence of an inner sphere. 
For the smaller scale convection with m = 7, which is mainly localized in the equatorial 
region, there are very few noticeable effects on the structure resulting from the presence 
of an inner sphere even with 7 = 0.5, as displayed in figure 4. The Rayleigh number R 
obtained from the numerical solutions increases slightly from R = 25.1 at 7 = 0.2 to 
R = 27.6 at 7 = 0.5. By contrast, the Rayleigh number R increases sharply for the 
larger scale convection with m = 3, from R = 11.4 at 7 = 0.2 to R = 23.0 at 7 = 0.5. 
An explanation for this sharp increase can readily be provided from the structure of 
convection illustrated in figure 5 and its comparison to figure 4. In addition to the 
Ekman boundary layer at the outer spherical surface, the non-axisymmetric 
Stewartson-type layer (Stewartson 1966) attaching the equator of the inner sphere is 
formed when the size of the inner sphere and the scale of flow are too large, resulting 
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in an extra viscous dissipation. In consequence, the Rayleigh number R is much larger. 
It is therefore inappropriate to apply the present perturbation theory of a sphere 
described in $ 3  to the cases which are characterized by a large-scale flow or a large 
inner sphere which may lead to wavenumber m < m,. For the case of the Earth’s fluid 
core with 7 M 0.35, the present analytical theory would give rise to a fairly accurate 
solution if the wavenumber of convection m 2 3, equivalent to a typical flow scale 
smaller than 3000 km. 

5. Concluding remarks 
For the convection problem in a rotating system, the Prandtl number Pr is a key 

parameter and enters into the problem from its first instability, which can be contrasted 
with the case of non-rotating convection. Many planetary and astrophysical fluids are 
characterized by rapid rotation and small Prandtl numbers. Moreover, it is reasonable 
to anticipate that the effective Prandtl numbers may be even smaller owing to the 
radiative contribution to the thermal diffusivity in the atmospheres of the major 
planets and Earth’s outer core. Convection in the form of inertial waves may have a 
direct relevance to the dynamics of the Earth’s fluid core. The existence of the inertial 
waves was observed in the laboratory experiment by Aldridge & Toomre (1969) and 
identified by the gravity observation on the Earth’s surface by Aldridge & Lumb 
(1987). However, the mechanism of exciting and sustaining these inertial waves in the 
Earth’s outer core remains unclear. Kerswell has (1994a, b)  studied the possibility of 
exciting the inertial waves by the mechanism of an elliptical instability in a tidally 
distorted rotating spheroid. The mathematical difficulties in the understanding of the 
inertial waves in the Earth’s outer core are mainly associated with the possibility of a 
continuous wave spectrum and the mechanism of selecting and sustaining an inertial 
wave. These difficulties can be readily overcome within the framework of instability 
theory described in this paper. On the assumptions that an inertial wave is excited and 
maintained by convective instability and that the physically observed inertial mode 
always corresponds to the most unstable mode, the problem of inertial waves in the 
Earth’s outer core may be understood on the basis of the present theory. 

We have extended convective instability analysis for the Poincare convection mode 
in rotating spherical systems from the case of the stress-free boundary condition to that 
of the non-slip boundary condition. An interesting and important question that 
remains to be answered is the behaviour of finite-amplitude solutions of the Poincare 
convection mode. Investigation including weakly nonlinear effects of the system seems 
to be feasible because of the availability of the analytical linear convection mode, 
though the presence of the Ekman boundary layer may complicate the analysis. It is 
of particular interest to find out whether and how the PoincarC mode convection 
becomes unstable at finite amplitudes, and, if unstable, what the form of the 
corresponding secondary convection is. Another interesting question is in connection 
with the PoincarC equations in a rotating spherical shell. Numerical analysis in this 
paper indicates that the perturbation theory of a sphere can be applied to the case of 
a spherical shell if the wavenumber of convection m > m,. A full understanding of the 
effects of an inner sphere on convection, however, requires a rigorous analysis 
involving analytical non-axisymmetric solutions of the Poincare equation in a rotating 
spherical shell which are still not available (Greenspan 1968; Aldridge 1972). 
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